3.6.92 \(\int \frac {(a+b \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [592]

Optimal. Leaf size=175 \[ \frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*a^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/5*a*b*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(5*a^2+7*b^2)*sin(d*x+c)/d/se
c(d*x+c)^(1/2)+12/5*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*
cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(5*a^2+7*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti
cF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3873, 3854, 3856, 2719, 4130, 2720} \begin {gather*} \frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {12 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(12*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(5*a^2 + 7*b^2)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2))
+ (4*a*b*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(5*a^2 + 7*b^2)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=(2 a b) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+\int \frac {a^2+b^2 \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (6 a b) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx-\frac {1}{7} \left (-5 a^2-7 b^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (-5 a^2-7 b^2\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (6 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (\left (-5 a^2-7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.48, size = 120, normalized size = 0.69 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (504 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\left (65 a^2+70 b^2+84 a b \cos (c+d x)+15 a^2 \cos (2 (c+d x))\right ) \sin (2 (c+d x))\right )}{210 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(504*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 20*(5*a^2 + 7*b^2)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2] + (65*a^2 + 70*b^2 + 84*a*b*Cos[c + d*x] + 15*a^2*Cos[2*(c + d*x)])*Sin[2*(c + d
*x)]))/(210*d)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 362, normalized size = 2.07

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2}+\left (-360 a^{2}-336 b a \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 a^{2}+336 b a +140 b^{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 a^{2}-84 b a -70 b^{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a^{2}+35 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, b^{2}-126 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, a b \right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(362\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*a^
2+(-360*a^2-336*a*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*a^2+336*a*b+140*b^2)*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)+(-80*a^2-84*a*b-70*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2+35*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^2-126*(sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.82, size = 191, normalized size = 1.09 \begin {gather*} \frac {126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 126 i \, \sqrt {2} a b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 5 \, \sqrt {2} {\left (5 i \, a^{2} + 7 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-5 i \, a^{2} - 7 i \, b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \frac {2 \, {\left (15 \, a^{2} \cos \left (d x + c\right )^{3} + 42 \, a b \cos \left (d x + c\right )^{2} + 5 \, {\left (5 \, a^{2} + 7 \, b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/105*(126*I*sqrt(2)*a*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 1
26*I*sqrt(2)*a*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 5*sqrt(2)
*(5*I*a^2 + 7*I*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-5*I*a^2 - 7*I*b^2
)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*(15*a^2*cos(d*x + c)^3 + 42*a*b*cos(d*x + c)^2
 + 5*(5*a^2 + 7*b^2)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2/sec(d*x+c)**(7/2),x)

[Out]

Integral((a + b*sec(c + d*x))**2/sec(c + d*x)**(7/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________